
LAWVERE’S FIXED POINT THEOREM

GEOFFREY HALL

These notes explain Lawvere’s fixed point theorem from scratch and go over some of its

applications.

1. Cartesian Closed Categories

We’ll start at the beginning with a definition of a category.

Definition 1.1. A category C consists of a class obC of objects and for any two objects

A,B in obC a set HomC(A,B) of morphisms f : A→ B such that

• for each object A ∈ obC there exist a morphism 1A : A → A called the identity

morphism,

• for any morphisms f : A→ B and g : B → C, there exists a morphism g◦f : A→ C

called the composition of f and g,

• for each morphism f : A→ B,

1B ◦ f = f = f ◦ 1A

and

• for any morphisms f : A→ B, g : B → C and h : C → D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

.

A morphism f : A → B is also called a map or arrow from A to B. We say that A is

the domain of the morphism f and that B is the codomain of f .

There are many examples of categories in mathematics. A salient example is the category

Set. The objects of this category are sets. A morphism f : A → B is simply a function

1



whose domain is A and whose codomain is B. The function 1A : A → A is that function

that sends each element of A to itself (i.e., the identity function).1

Another class of examples of categories consists of sets with some structure built on them.

The morphisms are then structure preserving functions between the objects in question. So

there is a category Grp whose objects are groups and whose morphisms are group homo-

morphism, a category Ring whose objects are rings and whose morphisms are ring homo-

morphisms, and a category Top whose objects are topological spaces and whose morphisms

are continuous maps. More generally, for any first-order signature L there is a category who

objects are L-structures and whose morphisms are homomorphisms between L-structures.2

These are all examples of concrete categories. The morphisms of the category are functions

of certain kinds and the objects are sets, possibly with some distinguished structure. But

there are important examples of non-concrete categories that illustrate some of the below

definitions nicely. We will focus on one example in particular: ordered sets.

Let X be a set. A preorder on X is a binary relation R ⊆ X × X that is reflexive

and transitive. A set equipped with a preorder is called a preordered set. Given any

preordered set X (with preorder R) we can define an associated category C(X) as follows.

We let obC(X) = X and for each x, y ∈ X, we let we let there be a morphism f : x → y

if and only if (x, y) ∈ R (we could simply let the pair (x, y) be this morphism and let

(y, z) ◦ (x, y) = (x, z)). Conversely, let C be any category such that obC is a set and between

any two objects there is exactly one arrow. Then we can define a corresponding preorder

R on obC by letting (x, y) ∈ R if and only if there is a morphism f : x → y. Thus we can

regard preordered sets as categories with a set of objects that are such that, between any

two objects there is exactly one arrow.

1Altough not strictly required, it is common to regard the sets HomC(A,B) and HomC(A,D) as being disjoint
whenever B and D are different objects. In the case of Set this requires the Bourbakian notion of function
according to which each function uniquely determines a codomain (one can simply take functions in Set
f : A → B to be triples (G(f), A,B) where G(f) is the graph of f , A is the domain of f , B is a set that
includes the range of f . With this notion of function we can regard functions as being surjections or being
bijections simpliciter rather than being surjections between some sets but not others. This allows for more
symmetry in the notions of injection and surjection.
2We could also look at categories with the same objects but whose morphisms are elementary embeddings.
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Just as we can regard preordered sets as categories, so too we can regard partially ordered

sets as categories. First a definition. Let C be any category. We say that a morphism

f : A→ B is an isomorphism if there exists a morphism g : B → A such that g ◦ f = 1A

and f ◦ g = 1B. This categorical notion of ismorphism provides a very general account that

subsumes “concrete” definitions of isomorphisms. For instance given any signature L the

isomorphisms in the category of L-structures are precisely the bijective homomorphisms.

And more generally it gives us the right notion of sameness in categories. In Top the

isomorphisms are precisely the homeomorphisms. But there are bijective morphisms in Top

(i.e., continuous functions that are bijections), that are not homeomorphisms.

With the notion of isomorphisms in place, we can define a partially ordered set to

simply be a preordered set, viewed as a category, in which isomorphic objects are identical.

Since in category theory objects are really only studied up to isomorphisms, there is a precise

sense in which preorders and partial orders are categorically indistinguishable. Thus from

the perspective of category theory, a set F of formulas preordered by a classical consequence

relation ` is indistinguishable from the partially ordered set of equivalence classes of F under

mutual provability (with the order given by [ϕ] ≤ [ψ] if and only if ` ϕ→ ψ).

In 1969 Lawvere showed that Cantor’s theorem followed as a simple corollary of a much

more general theorem concerning the class of cartesian closed categories. The category of

sets is a cartesian closed category. But there are many other examples. For instance, any

Heyting algebra can be viewed as a Cartesian closed category (and thus every Boolean

algebra is also a cartesian closed category). In order to understand the notion of a Cartesian

closed category, there are three things we need to introduce: the notion of a terminal object,

the notion of a product, and the notion of an exponential object. I will explain these in turn.

The simplest notion to explain is that of a terminal object.

Definition 1.2. Let C be a category. An object A in C is terminal if for every B in C there

is a unique morphism f : B → A.
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We can illustrate this definition with the category Set. Let A = {x} be a singleton. Then

for any set B, there will be exactly one function f : B → A: the function that sends each

element y ∈ B to x. Conversely suppose that A is a set with at least two elements. For each

x ∈ A, there is a function fx : A→ A that maps everything in A to x. Since A has at least

two elements x and y, there are then at least two function fx and fy from A to A. Hence

A is not terminal. The result is that in the category Set, the terminal objects are precisely

the singletons.

In concrete categories, terminal objects look similar to the terminal objects in Set. In

Grp the terminal object consists of the trivial group, whose sole element is the unit of the

group. In Top the terminal objects consist of one point spaces. But the notion of terminal

objects also makes sense in a poset. Given any poset X an object 1 ∈ X is terminal if for

any x ∈ X, x ≤ 1. Thus the terminal object of a poset is the top element of the poset. Thus

a poset has a greatest element if and only if it has a terminal object.

A category may have many terminal objects (as in Set). But the terminal objects are

always unique up to unique isomorphism. That is, if A and B are terminal in C there exists

a unique isomorphism f : A → B. To see this note that since both A and B are terminal

there are unique morphisms f : A→ B and g : B → A. Thus g ◦ f : A→ A is a morphism.

But since A is terminal, there is a unique morphism from A to A. And so since 1A : A→ A

we have that g ◦ f = 1A. Analogous reasoning shows f ◦ g = 1A. Hence f is the unique

isomorphism from A to B.

The second notion appealed to in the definition of a Cartesian closed category is the notion

of product.

Definition 1.3. Let C be a category and let A and B be two objects in C. A product

of A and B is an object A × B of C together with a pair of morphisms πA : A × B → A

and πB : A × B → B such that for any object Y and any morphisms f1 : Y → A and

f2 : Y → B there exists a unique morphism (f1, f2) : Y → A × B such that the following
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diagram commutes:

Y

A A×B B

f1 f2

(f1,f2)

πA πB

The concept of a product can again be illustrated with the category Set. Let A and B

be any sets and let A × B = {(a, b) | a ∈ A, b ∈ B} be the Cartesian product of A and B.

Let πA : A×B → B be the projection (a, b) 7→ a and let πB : A×B → B be the projection

(a, b) 7→ b. It is not hard to verify then that A×B with πA and πB is a product in Set.

The notion of product applies in may other categories. In the category Top the product of

two topological spaces is the product space. In the category Grp the product of two groups

is the direct product of groups. We can also illustrate the definition in the case of a poset.

For any two elements x, y ∈ X of a poset X, the product x × y of x and y is that element

such that, for any any z ∈ X, z ≤ x× y if and only if z ≤ x and z ≤ y. That is, the product

of two elements is their infimum or meet. Note that it is not always the case that in a partial

order two elements have a meet. Thus products needn’t always exist in a category.

We’ll say that a category has binary products if any two objects of the category have a

product. Thus a poset X has binary products if and only if X is a meet-semilattice. The

following notation will be useful in what follows. Let f : A → B and g : C → D be

two morphisms in a category that has binary products. Then we can define the morphism

f × g : A× C → B ×D to be (f ◦ πA, g ◦ πC). That is, f × g is the unique morphism such

that the following diagram commutes:

B B ×D D

A A× C C

πB πD

f

πA πC

f×g g

The existence and uniqueness of f × g follows from the definition of products. In the

category of sets, f × g : A× C → B ×D can be defined to be that function that maps any

pair (a, c) ∈ A× C to (f(a), g(c)) ∈ B ×D (since π1(a, c) = a and π2(a, c) = c.)
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Two objects are not guaranteed to have a unique product. But like terminal objects,

products are unique up to unique isomorphism. I won’t give the proof here, but the idea is

substantially the same as that for terminal objects.

A second important map to appeal to with respect to products is the diagonal map ∆ :

A→ A×A; this map will play an important role in the diagonalization proof of Lawvere’s.

This map can be defined simply as (1A, 1A). Thus ∆ is the unique map such that the

following diagram commutes:

A

A A×B A

1A 1A
∆

πA πA

We are now in a position to introduce the final componenent of cartesian closed categories:

exponentials.

Definition 1.4. Let C be a category that has binary products. Let A and B be objects

of C. Then an exponential of A and B is an object BA of C together with a morphism

ev : BA×A→ B such that for any object C and morphism f : C×A→ B there is a unique

morphism f̄ : C → BA (the transpose of f) such that the following diagram commutes:

BA × A B

C × A

ev

f̄×1A f

It will be helpful again to work through some examples. The category Set will again

illustrate the definition simply. Where A and B are two sets, the exponential of A and B is

the set BA = {f : A → B} of all functions from A to B. The morphism ev : BA × A → A

is the function that takes a function f : A→ B and argument a ∈ A and evaluates f at the

point a (i.e., ev(f, a) = f(a)).

Let C be any category with products and exponentials. The operation taking a morphism

f : C × A → B to its transpose f̄ : C → BA is a bijection from C(C × A,B) to C(C,BA).

To see this we can describe an inverse to this operation, also denoted by ·̄ taking morphism
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f : C → BA to morphisms f̄ : C × A→ B. We define f̄ to be the following composite:

BA × A

C × A B

ev(f,1A)

f̄

We’ve thus described a map from morphisms f : C × A → B to morphisms f̄C → BA

and a map from morphisms g : C → BA to morphisms ḡ : C ×A→ B. We’ll now show that

these are mutually inverse.

Proposition 1.5. Let C be a category with products and exponentials. Then for any mor-

phism f : C × A→ B,

¯̄f = f

And for any morphism g : C → BA,

¯̄g = g

Proof. Let f : C × A→ B be a morphism. Then by the definition of exponentials

f = ev ◦ (f̄ , 1A)

Where f̄ : C → BA. Then

¯̄f = ev ◦ (f̄ , 1A) = f

Similarly, if we start with g : C → BA we have

ḡ = ev ◦ (g, 1A)

Then ¯̄g is defined as the unique map such that

ḡ = ev ◦ (¯̄g, 1A)

And so since ¯̄g is unique, ¯̄g = g. �
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The fact that morphisms f : C ×A→ B correspond one to one with morphisms f̄ : C →

BA also reveals some of what exponentials are like in a categorical poset. Let X be a poset

with binary products and x, y ∈ X. Then the exponential yx := x→ y is that element such

that for any z ∈ X, z ∧ x ≤ y if and only if z ≤ x → y. Thus a poset has exponentials if

it is a meet-semilattice equipped with an implication operation. Similarly a set of formulas

preordered by classical consequence has exponentials. For any two formulas ϕ and ψ, the

exponential ψϕ is simply the material conditional ¬ϕ ∨ ψ, since χ ∧ ϕ ` ψ if and only if

χ ` ¬ϕ ∨ ψ.

With all of these notions in place we come to the main definition.

Definition 1.6. Let C be a category. Then C is Cartesian closed if and only if it has a

terminal object, and any two objects have both a product and an exponential.

We’ve thus already shown that Set is Cartesian closed. We’ve also seen that a bounded

meet-semilattice equipped with an implication operation is Cartesian closed. Thus all

Boolean algebras and Heyting algebras can be viewed as Cartesian closed categories. The

goal going forward will be to argue that Cantor’s theorem flows merely from the Cartesian

closedness of Set and not from anything like the distribution of sizes of sets. To make this

argument we’ll first show how cantor’s theorem can be viewed as an immediate corollary of

a theorem that holds in any Cartesian closed category. It will prove to be very helpful to

first go over some distintive feature of Cartesian closed categories.

1.1. Points, names and diagonals. In what follows we’ll fix a cartesian closed category

C with terminal object 1 ∈ C. In general, we cannot assume the objects of C are sets, and so

cannot assume that it makes sense to speak of “elements” of objects in C. There is however a

generalized notion of element that can be defined. For any object A we say that a morphism

p : 1 → A is a point in A. The guiding intuition here is the category Set. For any set A,

there is a bijection between A and the set of points of A that maps each point p : 1 → A

to the unique x ∈ p(1) (the image of 1 under p). The result is that in Set we can translate

between talk of elements of a given set and talk of points in a set.
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Equipped with this notion of point, we can also make clearer the sense in which the

exponential of two objects can be thought of as something like an abstract function space.

First we introduce the following abbreviation. For any morphism f : A × B → C and any

point a : 1→ A, we define the morphism f(a, ·) : B → C as the following composite:

1×B A×B

B C

(a,1B)

fπ−1
B

f(a,·)

Return to the category Set. Let a0 ∈ A be the element corresponding to a. Then for any

b ∈ B we have that f(a0, b) = f(a, ·)(b). So we can think of f(a, ·) as the unary function

that results from “plugging up” one of the slots in the binary function f .

With this notation in place we’ll show that there is a bijection from the set of morphisms

C(A,B) from A to B and the set of point C(1, BA) in BA. First we show the following

lemma.

Lemma 1.7. Let C be a cartesian closed category and let f : A→ B be a morphism. Then

there is a unique point pfq : 1→ BA such that

ev(pfq, ·) = f

Proof. What needs to be shown is that there is a unique point pfq : 1→ BA such that

1× A BA × A

A B

(pfq,1A)

evπ−1
A

f

Let pfq = f ◦ πA (i.e. the transpose of the composite f ◦ πA). By definition, this map is

the unique map such that

BA × A B

1× A

ev

(f◦πA,1A)
f◦πA

9



commutes. And so since πA : 1 × A → A is an isomorphism, f ◦ πA is also the unique map

for which

BA × A B

1× A

A

ev

(f◦πA,1A)
f◦πA

π−1
A

commutes. Since πA and π−1
A cancel out, the following commutes:

1× A B

A

f◦πA

π−1
A f

Then stringing these together tells us that f ◦ πA is the unique maps such that

1× A BA × A

A B

(f◦πA,1A)

evπ−1
A

f

commutes.

�

We call the point pfq : 1 → BA the name of the morphism f : A → B. The map that

sends each morphism to its name describes the relevant bijection.

Proposition 1.8. For each A and B the function

f 7→ pfq : C(A,B)→ C(1, BA)

is a bijection.

For any point p : 1 → A and morphism f : A → B we let f(p) abbreviate f ◦ p. For a

morphism (f, g) : C → A× B and morphism h : A× B → D we write h(f, g) for h ◦ (f, g).

With this notation in place we can prove the following important lemma.
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Lemma 1.9. Let f : A× A→ B be a morphism and p : 1→ A a point. Then

f(p, p) = ev(f̄(p), p)

where f̄ : A→ BA is the transpose of f .

Proof. What needs to be show is that the following diagram commutes.

1 BA × A

A× A B

(f̄(p),p)

(p,p) ev

f

We first note that the following commutes

A A× A A

A

1

π1 π2

1A 1A
∆

p pp

Hence ∆(p) = (p, p). Since the following commutes:

A A× A A

1 1× 1 1

1

πA1
πA2

p
p×p

π11 π12
p

∆
1111

p p

we can then conclude that ∆(p) = p× p ◦∆. Hence

f(p, p) = f ◦ p× p ◦∆

By the definition of the transpose of f , we can then infer

f(p, p) = ev ◦ (f̄ × 1A) ◦ (p× p) ◦∆
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Thus to prove the result it suffices to show that

(f̄ × 1A) ◦ (p× p) ◦∆ = (f̄(p), p)

This fact can be verified by noting first that the following diagram commutes (suppressing

now the relevant projections):

BA BA × A A

A A× A A

1 1× 1 1

1

f̄ f̄×1A 1A

p p×p p

∆
11 11

Thus, reading off the diagram,

f̄ × 1A ◦ p× p ◦∆ = (f̄ ◦ p ◦ 11, 1A ◦ p ◦ 11)

= (f̄(p), p)

�

2. Diagonalization and Cartesian Closed Categories

In this section, I will state and prove Lawvere’s fixed point theorem for Cartesian closed

categories, and the illustrate a couple of its applications.

Let C be a Cartesian closed category. We say that a morphism f : A → B is point-

surjective if for every point q : 1 → B there is a point p : 1 → A such that f(p) = q. We

say that a morphism g : B → B has a fixed point if there is a point q : 1 → B such that

g(q) = q.
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Theorem 2.1 (Lawvere’s fixed point theorem). Let C be a cartesian closed category. Then

a morphism f : A → BA is point- surjective only if every morphism g : B → B has a fixed

point.

Proof. Suppose that f : A → BA is point-surjective and let g : B → B be an arbitrary

morphism. Defin Φ to be the following composite:

A× A B

A B

f̄

g∆

Φ

Let pΦq : 1 → B name Φ. Since f is point-surjective, there is a point p : 1 → A such that

f(p) = pΦq. Thus

f̄(p, p) = ev(f(p), p) from Proposition 1.5 and Lemma 1.9

= ev(pΦq, p) by definition

= Φ(p) Lemma 1.7

= g(f̄(p, p)) by definition

�

3. Applications

Coming soon!
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